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1 Convex Analysis

This section is devoted to the study of convex functions f : B→ R ∪ {+∞}
and convex sets U ⊂ B, for B a Banach space. The case of B = Rn will be
of particular interest. We start with the fundamental definition of a convex
function and a convex set.

Definition 1.1. A function f : B → R ∪ {+∞}, with B a Banach space, is
called convex if for all x, y ∈ B, λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (1)

Note that we are assuming the usual arithmetic rules regarding +∞ in this
definition. To rule out the trivial case where f(x) = +∞ for all x, we introduce
the following definition.

Definition 1.2. A convex function f : B→ R ∪ {+∞} is called proper if there
exists a y ∈ B such that f(y) <∞.

Of course, we also introduce the notion of a convex set.

Definition 1.3. A set U ⊂ B, with B a Banach space, is called convex if
x, y ∈ U and λ ∈ [0, 1] implies that λx+ (1− λ)y ∈ U .

We are allowing our convex functions to take the value +∞. Another way of
affecting the same thing is to consider convex functions f : U ⊂ B→ R where U
is a convex set. The advantage of our approach is that the function contains all
of the information about its domain instead of this being specified in addition.

Definition 1.4. Let f : B→ R ∪ {+∞}. The domain of f , written dom(f), is
the set

dom(f) = {x ∈ B : f(x) < +∞} (2)

It is of course clear that the domain of a convex function is a convex set,
namely we have

Proposition 1.1. If f is convex, then dom(f) is a convex set.
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Proof. Let x, y ∈ dom(f), and let λ ∈ [0, 1]. Since f is convex and x, y ∈
dom(f), we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) < +∞ (3)

Hence λx+ (1− λ)y ∈ dom(f) as desired.

One of the remarkable properties of convex functions is that they enjoy
surprising regularity. This is true even though the definition makes no reference
to differentiability or continuity. We begin with an elementary result in this
direction.

Proposition 1.2. Let f : R→ R∪{+∞} be a convex function such that dom(f)
is open. Then f is continuous on dom(f).

Proof. If dom(f) is empty, the assertion is trivial. Otherwise, let x ∈ dom(f).
Then there exist a, b ∈ dom(f) such that a < x < b. Assume that x∗ ∈ (a, x).
Then we have, by convexity

f(x∗) ≤ λf(a) + (1− λ)f(x) (4)

f(x) ≤ µf(b) + (1− µ)f(x∗) (5)

for some λ, µ ∈ (0, 1). Moreover, as x∗ → x, we have λ, µ → 0. Rewriting the
last equation above yields

1

1− µ
f(x) +

µ

1− µ
f(b) ≤ f(x∗) ≤ λf(a) + (1− λ)f(x) (6)

Letting x∗ → x, which forces λ, µ → 0, and noting that f(a), f(b) < +∞, we
see that f(x∗) → f(x). Hence f is left continuous. A completely analogous
argument show that f is also right continuous and thus continuous.

We now examine the higher dimensional case, which requires more effort.
However, we will derive a stronger result. In particular, we will obtain local
Lipschitz continuity.

Theorem 1.1. Let f : B→ R∪{+∞} be a convex function on a Banach space
B. Let U ⊂ B be open such that f is bounded on U , i.e. f(x) ≤ C <∞ on U .
Then f is locally Lipschitz continuous on U .

Proof. Let x ∈ U and choose ε > 0 such that Bε(x) = {y ∈ B : ‖x− y‖ ≤ ε} ⊂
U . Let y ∈ Bε(x), y 6= x and define

w = x− (y − x)
ε

‖x− y‖
(7)

Then we have that
x = µw + (1− µ)y (8)
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with µ = (‖x− y‖)/(ε+ ‖x− y‖). Thus convexity ensures that

f(x) ≤ µf(w) + (1− µ)f(y) (9)

In particular, the above equation implies that if f(x) < 0

f(y) ≥ 1

1− µ
f(x)− µ

1− µ
f(w) ≥ 2f(x)− C (10)

since µ ≤ 1/2. Additionally, if f(x) ≥ 0 by the same logic we have

f(y) ≥ −C (11)

Since y ∈ Bε(x) was arbitrary, it follows that f is bounded below on Bε(x).
This implies that there exists K <∞ such that |f(x)| ≤ K on Bε(x).

Now let y, z ∈ Bε/4(x) and note that z ∈ Bε/2(y) ⊂ Bε(x). For y and z,
define

v = y + (z − y)
ε

2‖z − y‖
(12)

w = y − (z − y)
ε

2‖z − y‖
(13)

Thus v and w are the points on the boundary of Bε/2(y) which are collinear
with y and z. The important thing to note is that

z = λv + (1− λ)y (14)

with λ = (2‖z − y‖)/ε and

y = µw + (1− µ)z (15)

with µ = (2‖z − y‖)/(ε+ 2‖z − y‖). Thus convexity ensures that

f(z) ≤ λf(v) + (1− λ)f(y) (16)

f(y) ≤ µf(w) + (1− µ)f(z) (17)

Rearranging, we obtain

f(z)− f(y) ≤ λ(f(v)− f(y)) (18)

f(y)− f(z) ≤ µ(f(w)− f(z)) (19)

which implies that

−λ(f(v)− f(y)) ≤ f(y)− f(z) ≤ µ(f(w)− f(z)) (20)

and thus

|f(z)− f(y)| ≤ max {λ|f(v)− f(y)|, µ|f(w)− f(z)|} (21)
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So by the triangle inequality we have

|f(z)− f(y)| ≤ 2 max {λ, µ}K (22)

Recalling the definition of λ and µ we finally obtain

|f(z)− f(y)| ≤ 4K

ε
‖z − y‖ (23)

which completes the proof of local Lipschitz continuity.

This immediately implies Lipschitz continuity on open subsets of Rd

Proposition 1.3. Let f : Rd → R ∪ {+∞} be convex and let U ⊂ dom(f) be
an open set. Then f is locally Lipschitz continuous on U .

Proof. Let x ∈ U . In light of the preceding theorem, we only need to show that
x ∈ V ⊂ U with V open and f ≤ K <∞ on V . To do so define the subset

Pε(x) = {y ∈ Rd : |x− y|1 ≤ ε} (24)

and note that Pε(x) has non-empty interior, in particular x ∈ Pε(x)
o
.

More importantly, note that Pε(x) is the convex hull of the finitely many
points (x± εei)di=1.

Now choose ε so small that Pε(x) ⊂ U ⊂ dom(f). Thus, in particular,

f(x± εei) < +∞ (25)

for all i. Consequently, for all y ∈ Pε(x)
o ⊂ Pε(x), we have

f(y) ≤ K (26)

where K = max {f(x± εei) : i = 1, ..., d} <∞. Thus, the Lipschitz continuity
follows from the previous theorem.

We now continue our study of the regularity of convex functions by intro-
ducing a generalization of the derivative, known as the sub-differential.

Definition 1.5. Let f : B → R ∪ {+∞} be a convex function. The sub-
differential of f , Df ⊂ B× B∗ (here B∗ denotes the dual space of B) is defined
as

Df = {(x, p) ∈ B× B∗ : f(y) ≥ f(x) + 〈p, y − x〉 for all y ∈ B} (27)

The sub-differential of f at x is

∂f(x) = {p ∈ B∗ : (x, p) ∈ Df} (28)

First we wish to characterize which subsetsA ⊂ B×B∗ can be sub-differentials
of proper convex functions. To this end, we introduce the notion of a cyclically
monotone subset of B× B∗.
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Definition 1.6. A subset A ⊂ B × B∗ is called cyclically monotone if for any
n ≥ 2 and (x1, p1), ..., (xn, pn) ∈ A, we have

n∑
i=1

〈pi, xi+1 − xi〉 ≤ 0 (29)

where xn+1 is set equal to x1.

It is relatively easy to prove that the sub-differential of a proper convex
function is cyclically monotone.

Proposition 1.4. Let f : B → R ∪ {+∞} be a proper convex function. Then
Df is cyclically monotone.

Proof. Let (x1, p1), ..., (xn, pn) ∈ Df . Note first that since f is proper, f(xi) <
∞ for all i. This follows since for f(y) < ∞ (there must exist such a y as f is
proper), we have

f(xi) + 〈pi, y − xi〉 ≤ f(y) <∞ (30)

which is clearly impossible if f(xi) =∞.
Now consider the following inequalities which follow from the definition of

the sub-differential Df .

f(xi+1) ≥ f(xi) + 〈pi, xi+1 − xi〉 (31)

where xn+1 = x1. Adding these inequalities and noting that all of the f(xi)
cancel (here we use that f(xi) <∞), we see that

n∑
i=1

〈pi, xi+1 − xi〉 ≤ 0 (32)

As (x1, p1), ..., (xn, pn) ∈ Df were chosen arbitrarily, we see that Df is cyclically
monotone as desired.

A literal converse of the above statement cannot hold since the empty set is
cyclically monotone, for instance, yet is not the sub-differential of any proper
convex function. However, every cyclically monotone set is contained in the
sub-differential of a lower-semicontinuous proper convex function. Of course,
we must first introduce the concept of lower-semicontinuity.

Definition 1.7. A function f : B→ R ∪ {+∞} is lower-semicontinuous if for
all sequences xn ∈ B with xn → x, we have

f(x) ≤ lim inf
n

f(xn) (33)

The following simple and useful result allows us to construct many different
lower-semicontinuous convex functions.
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Proposition 1.5. Let fα, α ∈ A be a family of functions. Then if each fα is
lower-semicontinuous, so is f = supα∈A fα. Also, if each fα is convex, then so
is f = supα∈A fα.

Proof. The first statement is a consequence of the well-known inequality

sup
α

lim inf
β

g(α, β) ≤ lim inf
β

sup
α
g(α, β) (34)

Namely, if xn ∈ B with xn → x, then

f(x) = sup
α∈A

fα(x) ≤ sup
α∈A

lim inf
n

fα(xn) ≤ lim inf
n

sup
α∈A

fα(xn) = lim inf
n

f(xn)

(35)
where the first inequality follows since each fα is lower-semicontinuous.

To prove the second statement, let x, y ∈ B, λ ∈ R, and let ε > 0. Then for
some α ∈ A we have

f(λx+ (1− λ)y) < fα(λx+ (1− λ)y) + ε (36)

Thus since fα is convex, we have

f(λx+ (1− λ)y) < λfα(x) + (1− λ)fα(y) + ε ≤ λf(x) + (1− λ)f(y) + ε (37)

Since ε > 0 was arbitrary, we see that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (38)

and f is convex as desired.

We can now prove the following.

Proposition 1.6. Let A ⊂ B × B∗ be cyclically monotone. Then there exists
a function f : B → R, which is lower-semicontinuous, proper and convex, such
that

A ⊆ Df (39)

The clever proof, due to Rockafellar, proceeds by constructing the required
function f .

Proof. If A is empty the statement is obvious, so assume that (z, q) ∈ A for
some (z, q) ∈ B× B∗. Define the function f as follows

f(x) = sup
(y1,r1),...,(ym,rm)∈A

〈q, y1 − z〉+

m−1∑
i=1

〈ri, yi+1 − yi〉+ 〈rm, x− ym〉 (40)

I.e. we form the sum from the definition of cyclical monotonicity with the pairs
(z, q), (y1, r1), ..., (ym, rm), but we set ym+1 = x instead of z. Then we take the
supremum over all choices of (y1, r1), ..., (ym, rm) ∈ A.

We proceed to show that f satisfies the conditions of the theorem. Note
first that f is lower-semicontinuous and convex since it is the supremum of a
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collection of linear functions. Now, we check that f is proper. In particular, we
check that f(z) = 0. This is a result of the cyclical monotonicity of A. Note
that for any choice of (y1, r1), ..., (ym, rm) ∈ A, we have

〈q, y1 − z〉+

m−1∑
i=1

〈ri, yi+1 − yi〉+ 〈rm, z − ym〉 ≤ 0 (41)

exactly by the cyclical monotonicity of A applied to (z, q), (y1, r1), ..., (ym, rm).
Now note that the choice (y1, r1) = (z, q) gives f(z) = 0.

Finally, we check that A ⊂ Df . To this end, assume that (y, r) ∈ A and
x ∈ Rn. Now let (y1, r1), ..., (ym, rm) ∈ A be arbitrary. Then by applying the
definition of f(x) to the tuple (y1, r1), ..., (ym, rm), (y, r), we see that

f(x) ≥ 〈q, y1 − z〉+

m−1∑
i=1

〈ri, yi+1 − yi〉+ 〈rm, y − ym〉+ 〈r, x− y〉 (42)

Taking the supremum over tuples (y1, r1), ..., (ym, rm) ∈ A and noting the defi-
nition of f(y), we see that

f(x) ≥ f(y) + 〈r, x− y〉 (43)

and thus (y, r) ∈ Df . Since (y, r) ∈ A was arbitrary, we see that A ⊆ Df as
desired.

This doesn’t completely answer the question of which sets can occur as sub-
differentials of proper convex functions. We know that every sub-differential
is cyclically monotone and every cyclically monotone subset is contained in
a sub-differential. This seems to suggest that maximal cyclically monotone
sets (with respect to inclusion) would correspond to sub-differentials of lower-
semicontinuous proper convex functions. However, we must first show that
the sub-differential of a lower-semicontinuous proper convex function is indeed
maximal with respect to inclusion (what could fail is that the subdifferential
of a lower-semicontinuous proper convex function could be strictly contained in
the subdifferential of a different function). This will turn out to be the case.

Another, related question which we would like to ask is whether the sub-
differential characterizes a convex function f (up to a constant, of course), i.e.
whether it is possible for two different convex functions (which differ by more
than a constant) to have the same sub-differential. Unfortunately, this is possi-
ble, so the sub-differential of a convex function does not uniquely characterize
the function.

A example is given by the functions fa → R ∪ {+∞} defined by

fa(x) =


0 −1 < x < 1

a x = ±1

+∞ |x| > 1
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Clearly, fa is convex if a ≥ 0. Moreover, a simple computation shows that

Dfa =

{
(−1, 1)× {0} a > 0

((−1, 1)× {0}) ∪ ({−1} × (−∞, 0]) ∪ ({1} × [0,∞)) a = 0

Thus the sub-differential is the same for all functions fa with a > 0. The issue is
with the values on the boundary of the domain. To remedy this, we must require
that our functions to be lower semi-continuous. This ensures that the domain
of our function is closed and that it takes the ”correct” values on the boundary.
We will then see that the sub-differential does characterize lower-semicontinuous
functions.

Both of these considerations demonstrate the role that the assumption of
lower-semicontinuity plays.

The following proposition solves both of the above problems.

Proposition 1.7. Let f : B → R ∪ {+∞} be lower-semicontinuous, proper
and convex. Then for any lower-semicontinuous proper convex function g, if
Df ⊆ Dg, then g = f + C for some C ∈ R. Thus, Df = Dg.

We won’t prove this proposition until we’ve established more refined regu-
larity results, but let us mention some of the consequences.

Corollary 1.1. The sub-differential of a lower-semicontinuous proper convex
is a maximal cyclically monotone set, i.e. it is a cyclically monotone set which
is not strictly contained in any other cyclically monotone set.

Proof. Let f be a lower-semicontinuous proper convex function. If Df ⊆ A
with A cyclically monotone, then by proposition (1.6) we know that there exists
a lower-semicontinuous proper convex function g such that A ⊆ Dg. Thus
Df ⊆ Dg, which implies that Df = Dg by the previous proposition. Hence
Df = A and Df is a maximal cyclically monotone set.

Corollary 1.2. Maximal cyclically monotone sets are in one-to-one correspon-
dence with lower-semicontinuous proper convex functions up to addition of a
constant.

Proof. Given a lower-semicontinuous proper convex function f , its sub-differential
is a maximal cyclically monotone set. Given a maximal cyclically monotone set
A, proposition (1.6) produces a lower-semicontinuous proper convex function g,
with A ⊂ Dg. Now we need to show that these are inverses of each other (where
we consider two convex functions equivalent if they differ by a constant).

But it is clear that if A = Df , then proposition (1.6) produces a lower-
semicontinuous proper convex function g with Df ⊂ Dg and hence g = f +
C. Also, if A is a maximal cyclically monotone set, then proposition (1.6)
produces a lower-semicontinuous proper convex function g with A ⊂ Dg. Then
the maximality of A implies that A = Dg.

Thus these two maps are inverses of each other as desired.
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This correspondence between lower-semicontinuous proper convex functions
and maximal cyclically monotone sets is very useful in understanding the split-
ting methods of non-smooth convex optimization. This is because minimizing
a convex function is the same as finding an x such that 0 ∈ ∂f(x), i.e. is the
same as finding a zero of a maximal cyclically monotone set.

2 Dual of a Convex Function

In this section, we introduce the Fenchel dual of a lower-semicontinuous
proper convex function and derive some of its properties.

To begin with, recall that lower-semicontinuous proper convex functions (up
to adding a constant) are in bijection with maximal cyclically monotone sets.
We now note the following simple fact about maximal cyclically monotone sets.

Lemma 2.1. let A ⊂ B × B∗ be a maximal monotone set. Then the set B
obtained by swapping each element of A, i.e.

B = {(x, y) ∈ B∗ × B s.t. (y, x) ∈ A} (44)

is also maximal cyclically monotone.

Proof. First, we shall show that B is cyclically monotone. To this end we let
(p1, x1), ..., (pn, xn) ∈ B and note that

n∑
i=1

〈xi, pi − pi+1〉 =

n∑
i=1

〈xi − xi−1, pi〉 ≤ 0 (45)

here x0 = xn, pn+1 = p1 and the last inequality follows since by the definition
of B, (xn, pn), ..., (x1, p1) ∈ A and A is cyclically monotone.

The maximality of B follows since if B ⊆ B′ with B′ cyclically monotone,
then by swapping each element of B′, we obtain a cyclically monotone set con-
taining A, which must then be equal to A, implying that B = B′.

In summary, maximal cyclically monotone sets correspond to lower-semicontinuous
proper convex functions (up to adding a constant) and flipping the entries of a
maximal cyclically monotone preserves maximality and cyclical monotonicity.

So given a (lower-semicontinuous proper convex) function f : B → R, there
exists a (lower-semicontinuous proper convex) function g : B∗ → R (unique up
to adding a constant) whose sub-differential consists of the flipped entries of
Df . It turns out that there is a simple formula for g in terms of f .

Proposition 2.1. Let f : B → R be a lower-semicontinuous proper convex
function and define g : B∗ → R as follows

g(z) = sup
x∈B
{〈z, x〉 − f(x)} (46)

Then g is lower-semicontinuous, proper and convex and

Dg = {(x, y) s.t. (y, x) ∈ Df} (47)
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Proof. It is clear that g is lower-semicontinuous and convex, since it is the
supremum of a collection of linear functions.

Now, assume that (x, p) ∈ Df . Recall that this means that for all y ∈ B we
have

f(y) ≥ f(x) + 〈p, y − x〉 (48)

This implies that 〈p, x〉 − f(x) ≥ 〈p, y〉 − f(y) for all y ∈ B and so

g(p) = sup
z∈B
{〈p, z〉 − f(z)} = 〈p, x〉 − f(x) (49)

Note first that this implies that g is proper (g(p) < ∞). Also, if we let q ∈ B∗
be arbitrary, then

g(q) = sup
z∈B
{〈q, z〉 − f(z)} ≥ 〈q, x〉 − f(x) = 〈p, x〉 − f(x) + 〈q − p, x〉

= g(p) + 〈q − p, x〉
(50)

Thus, (p, x) ∈ Dg. So we have that

{(x, y) s.t. (y, x) ∈ Df} ⊆ Dg (51)

Now g is a proper convex function and so Dg is cyclically monotone. Moreover,
Df is maximal cyclically monotone since f is lower-semicontinuous. Also, by
the previous proposition, maximal cyclical monotonicity is preserved when the
entries of our set are swapped. Thus we have

Dg = {(x, y) s.t. (y, x) ∈ Df} (52)

as desired.

3 Refined Regularity Results

Recall that we previously proved that a convex function on Rn is Lipschitz
continuous on any open subset of its domain. In this section, we prove more
refined regularity results concerning the differentiability of convex functions.
This will allow us to give a proof of proposition (1.7).

4 Monotone Operators

In this subsection we introduce the notion of a monotone set. This general-
izes the concept of a cyclically monotone set and thus it generalizes the notion
of a sub-differential of a convex function. This notion will prove very useful is
studying non-smooth convex optimization.

Definition 4.1. A set A ⊂ B×B∗ is called monotone if for any (x1, p1), (x2, p2) ∈
A we have

〈p1 − p2, x2 − x1〉 ≤ 0 (53)
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Note that applying the definition of a cyclically monotone set to the pair
(x1, p1), (x2, p2) produces exactly this condition. This definition is more general,
though, since we only require the cyclical monotonicity condition for pairs of
elements in A, as opposed to arbitrary sequences of elements of A. This gives
us the following lemma.

Lemma 4.1. If A ⊂ B× B∗ is cyclically monotone, then it is monotone.

Monotone sets are indeed more general than cyclically monotone sets, as the
following example shows.

Example 4.1. Let B = R2, and consider the set A ⊂ R2×R2 defined as follows.

A = {((x, y), (−y, x)) with (x, y) ∈ R2} (54)

Then A is monotone, but not cyclically monotone. To see this, let (x1, y1), (x2, y2) ∈
R2 and note that for the corresponding points in A, we have

〈p1 − p2, x2 − x1〉 = (−y1 + y2, x1 − x2) · (x2 − x1, y2 − y1) = 0 (55)

and thus A is monotone. However, the definition of cyclical monotonicity fails
for the sequence of points of A corresponding to (1, 0), (0, 1), (−1, 0), (0,−1) ∈
R2.

Recall that by corollary (1.2) sub-differentials of lower semi-continuous con-
vex functions and maximal cyclically monotone sets are the same thing. By
the above, these are monotone sets. An important question is whether they are
maximal monotone sets, i.e. even though they aren’t strictly contained in any
cyclically monotone set, can they be strictly contained in a monotone set?

Proposition 4.1. Let f : B → R be a lower-semicontinuous proper convex
function. Then Df is a maximal monotone set.

Proof.

The utility of these results is that it allows us to generalize the problem of
minimizing a convex function to the problem of finding a zero of a maximal
monotone set. This is defined as follows.

Definition 4.2. Let A ⊂ B × B∗ be a monotone set. A zero of A is a point
x ∈ B such that (x, 0) ∈ A.

Note that not every monotone set is the sub-differential of a convex function,
and so this is indeed a strict generalization. In the next section we will introduce
the proximal point method for solving this problem (in the case where B is a
Hilbert space) and investigate how various algorithms in convex optimization
are special cases of it.

First, we define some operations on monotone sets and investigate their
properties.
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Definition 4.3. Let A,B ⊂ B × B∗ be monotone sets, and 0 ≤ λ ∈ R. Then
we define

λA = {(x, λy) s.t. (x, y) ∈ A} (56)

A+B = {(x, y + z) s.t. (x, y) ∈ A and (x, z) ∈ B} (57)

Proposition 4.2. Let A,B ⊂ B× B∗ be monotone sets, and 0 ≤ λ ∈ R. Then
λA and A+B are both monotone.

Proof. We merely need to check directly the definition. Let (x, p), (y, q) ∈ λA.
This means that there are (x, p∗), (y, q∗) ∈ A such that λp∗ = p and λq∗ = q.
Thus we have

〈p− q, y − x〉 = λ〈p∗ − q∗, y − x〉 ≤ 0 (58)

as λ ≥ 0 and 〈p∗ − q∗, y − x〉 ≤ 0 since A is monotone.
Now assume that (x, p), (y, q) ∈ A+B. Thus there exist (x, pA), (y, qA) ∈ A

and (x, pB), (y, qB) ∈ B such that p = pA + pB and q = qA + qB . Then we have

〈p− q, y − x〉 = 〈pA − qA, y − x〉+ 〈pB − qB , y − x〉 ≤ 0 (59)

since both A and B are monotone.

Note that if A and B are sub-differentials of convex functions, then these
operations correspond to scaling and addition of the corresponding convex func-
tions.

The first question we will ask is how these operations relate to maximal
monotonicity.

Proposition 4.3. If A is a maximal monotone set and 0 < λ ∈ R, then λA is
a maximal monotone set.

Proof. The key to the proof is to note that by expanding the definition λ−1(λA) =
A, as

λ−1(λA) = {(x, λ−1y) s.t. (x, y) ∈ λA} = {(x, λ−1λy) s.t. (x, y) ∈ A} (60)

Also, we definition we clearly have that if A ⊆ B, then λA ⊆ λB.
So now we assume that λA ⊆ B. Multiplying by λ−1, we have

A ⊆ λ−1B (61)

which implies by the maximality of A that A = λ−1B. Multiplying this by λ
we get

λA = B (62)

which proves that λA is maximal monotone as desired.

Note that the above theorem fails if λ = 0. For instance, consider the
maximal monotone set A = {(0, p) p ∈ B∗}. Then λA = {(0, 0)} which is not
maximal monotone. In terms of convex functions, what is happening is that
multiplying a convex function by 0 doesn’t make sense since the function takes
on infinite values outside of its domain.

Additionally, even if A and B are both maximal monotone, the sum A+B
need not be maximal monotone. Determining conditions on A and B which
ensure that A+B is maximally monotone is an intricate problem.
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5 The Proximal Point Method

Here we introduce the proximal point method for finding a zero of a maximal
monotone set. The key idea here are the notions of the resolvent and proximal
operator. Throughout, we will assume that B is a Hilbert Space and so B∗ is
canonically identified with B.

Definition 5.1. The identity set is I = {(x, x) s.t. x ∈ B} ⊂ B× B.

Note that this is a maximal monotone set since it is the subdifferential of
the function 1

2‖x‖
2
B.

Definition 5.2. Let A ⊂ B× B be a monotone set, then we define A−1 as

A−1 = {(y, x) s.t. (x, y) ∈ A} (63)

Recall from the previous section that if A is the subdifferential of a convex func-
tion, then this corresponds to taking the Fenchel dual of the function.

Definition 5.3. Let A ⊂ B× B be a monotone set. We define the resolvent of
A (which is a new monotone set) as

RA = (I +A)−1 (64)

The following important definition and lemma collects some properties of
the resolvent operator.

Definition 5.4. Let R ⊂ B×B be a monotone set. Then we say that R is said
to be non-expansive if

‖y1 − y2‖H ≤ ‖x1 − x2‖H (65)

whenever (x1, y1), (x2, y2) ∈ RA.
R is said to be firmly non-expansive if

‖y1 − y2‖2H ≤ 〈y1 − y2, x1 − x2〉H (66)

whenever (x1, y1), (x2, y2) ∈ R.

Note that a contraction is obviously non-expansive, and a firmly non-expansive
set is also non-expansive since

〈f(x)− f(y), x− y〉H ≤ ‖f(x)− f(y)‖H‖x− y‖H (67)

Also, a firmly non-expansive map need not be a contraction (take for instance f
to be the identity) and a contraction need not be firmly non-expansive (take for
instance H = R2 and R to be ((x, y), (−λy, λx))). Finally, firmly non-expansive
sets are also monotone since ‖y1 − y2‖2 ≥ 0.

Lemma 5.1. Assume that A is a monotone set. Then RA is a maximal mono-
tone operator.
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Proof. The proof of this is simply a matter of expanding the definition of RA.
Note that

RA = {(x+ y, x) s.t. (x, y) ∈ A} (68)

So we must show that if (x1, y1), (x2, y2) ∈ A, then

〈x1 − x2, x1 − x2〉 ≤ 〈x1 − x2, (x1 − x2) + (y1 − y2)〉 (69)

but this is equivalent to
0 ≤ 〈x1 − x2, y1 − y2〉 (70)

which is true iff A is monotone.

Note that we can reverse these implications and this gives us a bijection
between monotone sets and firmly non-expansive sets (note that A = R−1A − I).

Lemma 5.2. A non-expansive set (in particular a firmly non-expansive set) A
is single valued, i.e. (x, y1), (x, y2) ∈ A implies that y1 = y2.

Proof. This is obvious since the condition of non-expansiveness implies that
‖y1 − y2‖ ≤ ‖x− x‖ = 0.

The previous lemma implies that the resolvent of a maximal monotone set
defines a function RA : D(RA)→ B where D(S) = {x s.t. (x, y) ∈ S for some y}
(the domain of the set S). We can characterize the monotone sets A for which
D(RA) = B.

Theorem 5.1 (Minty). The domain of RA is all of B iff A is a maximal
monotone set.

The previous theorem tells us that if A is maximal monotone, then RA
defines a map RA : B → B. From now on, we will abuse notation and use RA
to denote this map as well as its graph (the subset of B× B).

From the definitions, we can describe explicitly how to calculate RA(z) for
z ∈ B. First, solve for (x, y) ∈ A satisfying x + y = z (that this can always be
done if A is maximal monotone is essentially the content of Minty’s theorem).
Then return x.

For a given maximal monotone set A, it may be difficult to solve the equation
x + y = z with (x, y) ∈ A. However, if A = Df with f convex and lower-
semicontinuous, then we easily verify that

RA(z) = arg min
x∈B

1

2
‖x− z‖2H + f(x) (71)

since x∗ being the optimizer of this problem implies that z−x∗ ∈ Df(x∗). From
now on we abuse notation and write Rf for RDf

and call this the resolvent of the
convex function f (in the literature it may also be referred to as the proximal
map of f).

For a variety of convex function f , there are efficient algorithms for solving
this optimization problem. One may argue that in each of these cases there is
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also a simple algorithm for minimizing f itself. This is correct, however, the
usefulness of the resolvent map is in the development of splitting methods, which
allow us to bootstrap algorithms for solving the optimization problem above to
algorithms for minimizing sums of convex functions.

The proximal point algorithm consists of the iteration xn+1 = RA(xn). Note
that if x∗ = RA(x∗), then by definition (x, 0) ∈ A. Hence fixed points of the
proximal point iteration are zeros of the maximal monotone set A. In the next
section investigate the convergence properties of the proximal point algorithm.

6 Peaceman-Rachford and Douglas-Rachford Split-
ting

We begin with a simple lemma about firmly non-expansive operators.

Lemma 6.1. Let R : B→ B. Then the following are equivalent:
1. R is a firmly non-expansive operator.
2. 2R− I is a non-expansive operator.
3. R = 1

2S + 1
2I for some non-expansive operator S.

Proof. (1 → 2) We compute

‖(2R(x)− x)− (2R(y)− y)‖2 =

〈2(R(x)−R(y))− (x− y), 2(R(x)−R(y))− (x− y)〉 =

4(‖R(x)−R(y),R(x)−R(y)‖2 − 〈R(x)−R(y), x− y〉) + ‖x− y‖2
(72)

Now, since R is firmly non-expansive, we have that

‖R(x)−R(y), R(x)−R(y)‖2 − 〈R(x)−R(y), x− y〉 ≤ 0 (73)

and thus
‖(2R(x)− x)− (2R(y)− y)‖2 ≤ ‖x− y‖2 (74)

so that 2R− I is non-expansive.
(2 → 3) This is obvious since R = 1

2 (2R− I) + 1
2I.

(3 → 1) Note that S = 2R− I and reverse the argument for (1 → 2).

The operator 2R − I is called the reflection of R about the identity. Note
that it may be the case that 2R − I is also firmly non-expansive (for instance,
if R is a translation, then 2R− I, 4R− 3I, ... are all firmly non-expansive).

The problem that we want a splitting method for is solving 0 ∈ (A+B)(x)
for maximal monotone sets A and B. Note that this is the same as finding an
x such that (x, a) ∈ A, (x, b) ∈ B and a + b = 0. Recall that iterating RA
calculates x s.t. (x, 0) ∈ A and iterating RB calculates x s.t. (x, 0) ∈ B(x).

A reasonable approach seems to be to iterate RA ◦RB or 1
2 (RA ◦RB) + 1

2I).
RA ◦ RB is certainly non-expansive (as RA and RB are) which means that
averaging it with the identity produces a firmly non-expansive operator by the
above lemma. However, it has the wrong fixed points, as we shall now compute.
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Recall that to compute RB(z), we first find (x, y) ∈ B such that x + y = z
and return x. Then to apply RA we calculate (a, b) ∈ A such that a + b = x
and return a. We can write this as

RA ◦RB = {(z, a) s.t. (x, y) ∈ B, (a, b) ∈ A, x+ y = z, a+ b = x} (75)

Thus z is a fixed point of RA◦RB i.e. (z, z) ∈ RA◦RB iff (z, b) ∈ A, (z+b, y) ∈ B
with z+y+ b = z or y+ b = 0. What we really want is a z such that (z, y) ∈ B,
(z, b) ∈ A and y + b = 0. But here we have B evaluated at the wrong point
z + b.

This was really a warm up for introducing the Peaceman-Rachford and
Douglas-Rachford iterations. These splitting methods were motivated by some
numerical methods developed in the 50s for solving the heat equation. We begin
first with the Peaceman-Rachford iteration.

Definition 6.1 (Peaceman-Rachford). Let A and B be maximal monotone sets.
Then the Peaceman-Rachford iteration is

xn+1 = (2RA − I) ◦ (2RB − I)(xn) (76)

Thus, instead of composing the resolvent operators, we compose their reflec-
tions.

Since the resolvents are firmly non-expansive, the previous lemma implies
that their reflections are non-expansive. Thus their composition is non-expansive
and the Peaceman-Rachford iteration is equivalent to iterating a non-expansive
map.

Now we calculate the fixed points of the Peaceman-Rachford iteration.

Lemma 6.2. If z is a fixed point of (2RA − I) ◦ (2RB − I), then (RB(z), 0) ∈
(A+B), i.e. RB(z) is a zero of A+B.

Proof. We first characterize the calculating of (2RA − I)(z). Calculating this
is equivalent to finding (a, b) ∈ A such that a + b = z and returning 2a − (a +
b) = a − b. We apply 2RB − I in a similar fashion. This yields the following
characterization of the Peaceman-Rachford map.

(2RA − I) ◦ (2RB − I) =

{(z, a− b) s.t. (x, y) ∈ B, (a, b) ∈ A, x+ y = z, a+ b = x− y}
(77)

Thus, z is a fixed point of the iteration iff z = a− b with

(x, y) ∈ B, (a, b) ∈ A, x+ y = z = a− b, a+ b = x− y

But the linear system x + y = a − b and a + b = x − y implies that x = a and
y = −b.

But now (x, y) ∈ A, (a = x, b) ∈ B and y+b = 0, so x is a zero of A+B (what
we wanted to find!). Moreover, (x, y) ∈ B and x+y = z so that x = RB(z).
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The Peaceman-Rachford algorithm finds a 0 of A+B by iterating the map
(2RA − I) ◦ (2RB − I) and then applying RB to the fixed point.

One issue is that (2RA − I) ◦ (2RB − I) is only a non-expansive map, so its
iterates are not guaranteed to converge (even weakly) to a fixed point (take for
instance a rotation in R2).

However, we have seen that we can obtain a firmly non-expansive map with
the same fixed points by averaging with the identity! This produces the Douglas-
Rachford iteration.

Definition 6.2 (Douglas-Rachford). Let A and B be maximal monotone sets.
Then the Peaceman-Rachford iteration is

xn+1 =
1

2
(2RA − I) ◦ (2RB − I)(xn) +

1

2
xn (78)

which can be rewritten in the form

xn+1 = RA ◦ (2RB − I)(xn)− (RB − I)(xn) (79)

The Douglas-Rachford algorithm iterates this map (which is firmly non-
expansive and so is guaranteed to converge (at least weakly) to a fixed point)
and then applies RB to the result.

6.1 Linear Convergence of Douglas-Rachford under Strong
Convexity and Smoothness

We examine the behavior of the Douglas-Rachford and Peaceman-Rachford
iterations in the case where at least one of the maximal monotone sets involved
is the subdifferential of a strongly convex and smooth function.

We begin by recalling the following definitions.

Definition 6.3. A function f : H → R is called α-strongly convex if f(x) −
1
2α‖x‖

2
H is convex.

Definition 6.4. A function f : H → R is called β-smooth if it is everywhere
differentiable and ‖∇f(x1)−∇f(x2)‖H ≤ β‖x1−x2‖H (recall that H is a Hilbert
space and so it is self-dual).

The goal of this section is to prove the following

Theorem 6.1. Suppose that f : H → R is β-smooth and α-strongly convex.

Then 2Rf − I is a contraction with λ =

√(
1− 4α

(1+β)2

)
, i.e.

‖(2Rf − I)(x1)− (2Rf − I)(x2)‖H ≤

√(
1− 4α

(1 + β)2

)
‖x1 − x2‖H (80)

Note that this theorem implies that the Douglas-Rachford iteration con-
verges linearly if at least one of the maximal monotone sets is the subdifferential
of a strongly convex and smooth function. This is because the composition of
a non-expansive map and a contraction is a contraction.
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Proof. Note that since f(y)− 1
2α‖y‖

2
H is convex and f is differentiable, we have

that (y,∇f(y)− αy) ⊂ H×H is a monotone set. This means that

〈(∇f(y1)− αy1)− (∇f(y2)− αy2), y1 − y2〉 ≥ 0 (81)

so that
〈∇f(y1)−∇f(y2), y1 − y2〉 ≥ α‖y1 − y2‖2H (82)

Using the Cauchy-Schwartz inequality and the assumption that f is β-smooth
yields

〈y1 − y2,∇f(y1)−∇f(y2)〉 ≤ ‖y1 − y2‖H‖∇f(y1)−∇f(y2)‖H ≤ β‖y1 − y2‖2H
(83)

Combining these inequalities we obtain

α‖y1 − y2‖2H ≤ 〈y1 − y2,∇f(y1)−∇f(y2)〉 ≤ β‖y1 − y2‖2H (84)

Note that this immediately implies that α ≤ β.
Now recall that Rf (x) is the solution to the equation y + ∇f(y) = x and

thus (2Rf − I)(x) = 2Rf (x) − x = y − ∇f(y) with y + ∇f(y) = x. We now
compute

‖(2Rf − I)(x1)− (2Rf − I)(x2)‖2H = ‖(y1 −∇f(y1))− (y2 −∇f(y2))‖2H =

‖y1 − y2‖2H + ‖∇f(y1)−∇f(y2)‖2H − 2〈y1 − y2,∇f(y1)−∇f(y2)〉
On the other hand, we have

‖x1 − x2‖2H = ‖(y1 +∇f(y1))− (y2 +∇f(y2))‖2H =

‖y1 − y2‖2H + ‖∇f(y1)−∇f(y2)‖2H + 2〈y1 − y2,∇f(y1)−∇f(y2)〉
Combining these two equations we get that

‖(2Rf − I)(x1)− (2Rf − I)(x2)‖2H = ‖x1− x2‖2H − 4〈y1− y2,∇f(y1)−∇f(y2)〉
(85)

so that

‖(2Rf − I)(x1)− (2Rf − I)(x2)‖2H ≤ ‖x1 − x2‖2H − 4α‖y1 − y2‖2H (86)

But the equation for ‖x1 − x2‖2H also implies that

‖x1 − x2‖2H ≤ ‖y1 − y2‖2H + (β‖y1 − y2‖H)
2

+ 2β‖y1 − y2‖2H (87)

and we have

‖y1 − y2‖2H ≥
1

(1 + β)2
‖x1 − x2‖2H (88)

so that we finally get

‖(2Rf − I)(x1)− (2Rf − I)(x2)‖2H ≤
(

1− 4α

(1 + β)2

)
‖x1 − x2‖2H (89)

as desired.
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This theorem tells us that the Douglas-Rachford iteration is most useful
when minimizing the sum of two convex functions, one of which is strongly
convex and smooth. One of the main applications of this is regularizing a
smooth, strongly convex optimization problem using an L1 penalty term (which
is often done in statistics). This is indeed where ADMM (which we shall see is
Douglas-Rachford in disguise, but on the dual problem) has proved incredibly
well-behaved and useful.
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