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1 Bernoulli Numbers and Bernoulli Polynomi-
als

Our investigation of the Bernoulli numbers begins with the following problem.
Given an integer n ≥ 0, we wish to find a polynomial Bn(x) such that for all
real numbers a

an =

∫ a+1

a

Bn(x)dx

It is maybe not immediately clear that such polynomials exist but in fact they
are not that difficult to construct. We begin by differentiating both sides of the
above equation with respect to a and obtain

nan−1 = Bn(a+ 1)−Bn(a)

Assuming that n > 0 we see that∫ a+1

a

nBn−1(x)dx = Bn(a+ 1)−Bn(a)

This implies that B′n(x) = nBn−1(x). Using in addition the fact that for n > 0,

0 = 0n =

∫ 1

0

Bn(x)dx

we see that given Bn−1(x), Bn(x) is uniquely determined by the conditions

B′n(x) = nBn−1(x) and
∫ 1

0
Bn(x)dx = 0. Combining this with the observation

that B0(x) = 1 we can inductively construct the Bernoulli polynomials, which
are the unique polynomials satisfing the desired condition.
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The first few Bernoulli polynomials are B0(x) = 1, B1(x) = x − 1/2,
B2(x) = x2 − x+ 1/6, etc. The numerator and denominator of the coefficients
of the Bernoulli polynomials grow quite rapidly. Nonetheless, the recursive
relation satified by the Bernoulli polynomials makes them relatively easy to
compute.

One interesting property of the Bernoulli polynomials is the following.
Note that

an+(a+1)n+...+(a+k)n =

∫ a+k+1

a

Bn(x)dx =
1

n+ 1
(Bn+1(a+k+1)−Bn+1(a))

Plugging in a = 0 we see that

1n + 2n + ...+ kn =
1

n+ 1
(Bn+1(k + 1)−Bn+1(0))

Letting n = 1, we obtain, for example, the well-known formula that

1 + 2 + ...+ k =
1

2
((k + 1)2 − (k + 1) +

1

6
− 1

6
) =

(k2 + k)

2

We can compute B3(x) = x3 − (3/2)x2 + (1/2)x to obtain the less obvious
formula

1 + 4 + 9 + ...+ k2 =
1

3
((k + 1)3 − 3

2
(k + 1)2 +

1

2
(k + 1)) =

(k(2k + 1)(k + 1))

6

and this process can clearly be generalized.

We now define Bn(0) = Bn to be the n-th Bernoulli number. Notice that

Bn(x) =

n∑
i=0

(
n

i

)
Bix

n−i

This can be seen by induction as follows. It is clearly true for n = 0. Now
assume it is true for n, then B′n+1(x) = (n+ 1)Bn(x) =

∑n
i=0(n+ 1)

(
n
i

)
Bix

n−i.
Additionally, Bn+1 is by definition the constant term ofBn+1(x). So we compute

Bn+1(x) =

n∑
i=0

n+ 1

n− i+ 1

(
n

i

)
Bix

n−i+1 +Bn+1

Noticing that n+1
n−i+1

(
n
i

)
=
(
n+1
i

)
we have

Bn+1(x) =

n+1∑
i=0

(
n+ 1

i

)
Bix

n+1−i

as desired.
Now assume that n > 1. Then notice that since the integral of Bn−1(x)

on the interval [0, 1] is 0 and B′n(x) = Bn−1(x) we must have Bn = Bn(0) =
Bn(1). In light of the previous formula for Bn(x) we obtain the following relation
between the Bernoulli numbers.

Bn =

n∑
i=0

(
n

i

)
Bi
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or

0 =

n−1∑
i=0

(
n

i

)
Bi

for n > 1. If n = 1, then the corresponding relation is simply B0 = 1. This
could also be used to compute the Bernoulli numbers.

Our next goal is to derive the exponential generating function for the
Bernoulli numbers and in the process to prove that Bn = 0 for odd n > 1. We
proceed as follows. Define

f(t, x) =

∞∑
n=0

Bn(t)

n!
xn

Taking derivatives with respect to t we see that

df

dt
=

∞∑
n=1

Bn−1(t)

(n− 1)!
xn =

∞∑
n=0

Bn(t)

n!
xn+1 = xf(t, x)

By solving this differential equation we see that f(t, x) = g(x)ext for some
function g(x). Now we have additionally that∫ 1

0

f(t, x)dt =

∞∑
n=0

∫ 1

0

Bn(t)

n!
xn = 1

for all x, since all of the integrals in above sum are 0 except for the first one by
the recursive relation that the Bernoulli polynomials satisfy. This permits us to
solve for g(x). Namely we have

1 =

∫ 1

0

g(x)extdt = g(x)

∫ 1

0

ext = g(x)
ex − 1

x

from which we obtain that g(x) = x
ex−1 . Combining this we see that

f(t, x) =
xetx

ex − 1

and letting t = 0 we have

∞∑
n=0

Bn
n!
xn =

x

ex − 1

Now we wish to show that Bn = 0 for odd n > 1. Since we know that B1

1! = − 1
2

we must simply show that f(0, x)+ x
2 is an even function of x. But this is simple

x

ex − 1
+
x

2
=

2x+ xex − x
2ex − 2

=
x(ex + 1)

2(ex − 1)

Replacing x by −x we obtain

−x(e−x + 1)

2(e−x − 1)
=
−x(1 + ex)

2(1− ex)
=
x(ex + 1)

2(ex − 1)
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so f(0, x) + x
2 is an even function and thus Bn = 0 for odd n > 1 as desired.

One last remark in this section is the following. If we instead decided to
find polynomials such that

an =

∫ a+h

a

Pn(x)dx

for any h 6= 0 we could proceed as follows. Consider

(ha)n =

∫ h(a+1)

ha

Pn(x)dx

Now make the change of variables hy = x. Then we see that

(ha)n =

∫ a+1

a

Pn(hy)hdy

so that

an =

∫ a+1

a

1

hn−1
Pn(hy)dy

Consequently, by the uniqueness of the Bernoulli polynomials we must have
that Bn(x) = 1

hn−1Pn(hx) or Pn(x) = hn−1Bn(xh ). So these polynomials can be
expressed simply in terms of the Bernoulli polynomials.

If we let h = 1
k for some natural number k, then we could have solved the

preceding problem differently, by setting Pn(x) =
∑k−1
j=0 Bn(x + j

k ). One can
easily see that ∫ a+ 1

k

a

Pn(x)dx =

∫ a+1

a

Bn(x)dx

for each n so we must have

(
1

k
)n−1Bn(kx) =

k−1∑
j=0

Bn(x+
j

k
)

or

Bn(kx) = kn−1
k−1∑
j=0

Bn(x+
j

k
)

To conclude the section on Bernoulli polynomials, I will say that each of the
properties derived here is interesting and important for the further application of
Bernoulli polynomials. Also note that much of this section can be reformulated
in the language of linear algebra. We consider the vectorspace R[x] of all poly-
nomials with real coefficients and analyse the linear map T : R[x]→ R[x] which

sends a polynomial p(x) to the polynomial h(y) =
∫ y+1

y
p(x)dx. It is a simple

matter to verify that this is a linear map such that deg(p(x)) = deg(T (p(x))).
This implies that T is a bijection and so has an inverse T−1. Then Bn(x) =
T−1(xn).
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2 L-functions

2.1 Characters

Let A be a finite abelian group and consider the group Hom(A,C×) ∼= A of
group homomorphisms from A to the multiplicative group of complex numbers.
This is called the group of characters.

Lemma 2.1 Hom(A,C×) ∼= A

Proof Since A is a finite abelian group, we know that A is a product of cyclic
groups. Since Hom(X × Y,Z) ∼= Hom(X,Z)×Hom(Y, Z) we must only show
that the lemma holds for a finite cyclic group. So assume that A is generated
by x and xn = 1. Then any χ ∈ Hom(A,C×) is uniquely determined by χ(x)
and χ(x) must be an n-th root of unity. Hence Hom(A,C×) is isomorphic to
the group of n-th roots of unity which is cyclic of order n. This completes the
proof.

The next two lemmas relate the characters to the additive structure of C.

Lemma 2.2 ∑
x∈A

χ(x) =

{
0 χ 6= 1
|A| χ = 1

Proof If χ = 1, the sum is
∑
x∈A 1 = |A|.

Now assume that χ 6= 1 and let y ∈ A such that χ(y) 6= 1. Then∑
x∈A

χ(x) =
∑
x∈A

χ(yx) = χ(y)
∑
x∈A

χ(x)

so (1− χ(y))
∑
x∈A χ(x) = 0. As χ(y) 6= 1 we must have

∑
x∈A χ(x) = 0.

Lemma 2.3 ∑
χ∈Hom(A,C×)

χ(x) =

{
0 x 6= 1
|A| x = 1

Proof If x = 1, the sum is
∑
χ∈Hom(A,C×) 1 = |A|.

Now assume that x 6= 1. If χ(x) = 1 for all χ ∈ Hom(A,C×), then
Hom(A,C×) ∼= Hom(A/(x),C×) (here (x) is the cyclic subgroup generated by
x). But then by the first lemma of this section A ∼= A/(x) which is impossible
since the groups have different orders.

So pick a ψ ∈ Hom(A,C×) such that ψ(x) 6= 1. Then∑
χ∈Hom(A,C×)

χ(x) =
∑

χ∈Hom(A,C×)

ψχ(x) = ψ(x)
∑

χ∈Hom(A,C×)

χ(x)

so (1 − ψ(x))
∑
χ∈Hom(A,C×) χ(x) = 0 and since ψ(x) 6= 1 we conclude that∑

χ∈Hom(A,C×) χ(x) = 0.

In the following we consider the case where A = (Z/nZ)× for some positive
integer n. Given a character χ of A we extend χ : Z→ C by setting χ(a) = 0 if
(a, n) 6= 1. Then χ satisfies χ(ab) = χ(a)χ(b) for any two integers a, b.

5



2.2 Diriclet Series

In this section we define the main object of study, the Diriclet L-series.

Definition Let χ be the extension of a character (Z/nZ)× to Z by setting
χ(a) = 0 if (a, n) > 1. Define the Dirichlet L-function of the character to be

L(χ, s) =

∞∑
n=1

χ(n)

ns

The goal of the remainder of this chapter will be to derive as many properties
of L-functions as possible. We begin with a very simple lemma.

Lemma 2.4 The above sum converges absolutely for Re(s) > 1.

Proof This statement follows since |χn/ns| ≤ |1/nRe(s)| and thus the above
series converges absolutely by comparison with

∑∞
n=1 1/nRe(s) for Re(s) > 1.

The above proof also shows that for any δ > 0, the above series converges abso-
lutely and uniformly for Re(s) ≥ 1 + δ which implies that the series converges
to an analytic function in the half-plane Re(s) > 1.

We will proceed to derive a formula for the analytic continuation of L(χ, s)
to the entire complex plane. In order to do this we will introduce the partial zeta
functions ζ(s, n; r), analytically continue them and write our original L-series in
terms of the partial zeta functions.

2.3 Analytic Continuation of Partial Zeta Functions

In this section we define and compute the analytic continuation of the partial
zeta functions.

Definition Let n ∈ N and 1 ≤ r ≤ n. Then we define

ζ(s, n; r) =

∞∑
k=1

1

(k − n−r
n )s

.

Notice that if n = r, we obtain the familiar Riemann zeta function. The reason
why the partial zeta functions are useful is that we can analytically continue
them using the Euler-Maclauren summation formula.

To obtain the Euler-Maclauren formula, consider a smooth function f :
R → C such that

∫∞
1
|f(x)|dx < ∞ and

∑∞
n=1 |f(n)| < ∞. We wish to relate∑∞

n=1 f(n) to
∫∞
1
f(x)dx. To this end, rewrite∫ ∞

1

f(x)dx =

∞∑
n=1

∫ n+1

n

B0(x− n)f(x)dx

and integrate each of the terms in the sum by parts to obtain∫ ∞
1

f(x)dx =

∞∑
n=1

B1(1)f(n+ 1)−B1(0)f(n)−
∞∑
n=1

∫ n+1

n

B1(x− n)f ′(x)dx
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Now the first sum
∑∞
n=1B1(1)f(n + 1) − B1(0)f(n) can be simplified since

B1(1) = 1
2 and B1(0) = − 1

2 so that

∞∑
n=1

B1(1)f(n+ 1)−B1(0)f(n) = −f(1)

2
+

∞∑
n=1

f(n)

We deal with the second term
∑∞
n=1

∫ n+1

n
B1(x − n)f ′(x)dx by integrating by

parts 2l times to obtain

∞∑
n=1

∫ n+1

n

B1(x− n)f ′(x)dx =

l∑
k=1

B2k

(2k)!
f (2k−1)(1)

−
∞∑
n=1

∫ n+1

n

B2l+1

(2l + 1)!
(x− n)f (2l)(x)dx

This works out since Bk(x)′ = kBk−1(x) and Bk(0) = Bk(1) = Bk for k > 1
so the sum which shows up when integrating by parts telescopes except for the
first term. The odd Bernoulli numbers are 0 so these terms are omitted from
the above sum.

Rearranging the above we obtain

∞∑
n=1

f(n) =

∫ ∞
1

f(x)dx+
f(1)

2
−

l∑
k=1

B2k

(2k)!
f (2k−1)(1)

+

∞∑
n=1

∫ n+1

n

B2l+1

(2l + 1)!
(x− n)f (2l)(x)dx

which holds for any l ∈ N. This looks like a complicated formula, but it is very
useful for analytically continuing functions which are expressed as convergent
series. This is especially true if higher derivatives of f are more “well-behaved”
than f .

How this works will become clear when applying this to the function
f(x) = 1

(x−n−r
n )s

to analytically continue ζ(s, n; r). We see that for Re(s) > 1,

ζ(s, n; r) =

∫ ∞
1

1

(x− n−r
n )s

dx+
ns

2rs

+

l∑
k=1

B2k

(2k)!

s(s+ 1)(s+ 2)...(s+ 2k − 2)ns+(2k−1)

rs+(2k−1)

+s(s+ 1)(s+ 2)...(s+ 2l − 1)

∞∑
n=1

∫ n+1

n

B2l+1

(2l + 1)!
(x− n)

1

(x− n−r
n )s+2l

dx

We evaluate the first integral explicitly to obtain

ζ(s, n; r) =
ns−1

rs−1(1− s)
+
ns

2rs
+

l∑
k=1

B2k

(2k)!

s(s+ 1)(s+ 2)...(s+ 2k − 2)ns+(2k−1)

rs+(2k−1)

+s(s+ 1)(s+ 2)...(s+ 2l − 1)

∞∑
n=1

∫ n+1

n

B2l+1

(2l + 1)!
(x− n)

1

(x− n−r
n )s+2l

dx
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The exact details of this formula are not important. What is important is
that the last sum is the only “infinite” part of the formula, i.e. everything else
can be evaluated explicitly using a finite number of operations. Thus everything
except the last sum represents a meromorphic function (defined everywhere
except for a pole at s = 1(due to the first term). Additionally, since B2l+1(x)
is bounded on [0, 1] (it is continuous, being a polynomial) we have that the last
sum is bounded by

(sup
[0,1]

B2l+1(x))

∫ ∞
1

∣∣∣∣ 1

(x− n−r
n )s+2l

∣∣∣∣ dx
This is finite as long as Re(s) > 1−2l (since

∫∞
q
x−tdx <∞ if q > 0 and t > 1).

Thus by a standard argument the final sum converges uniformly to an analytic
function as long as Re(s) > 1− 2l. Since l was arbitrary, this formula gives the
analytic continuation of ζ(s, n; r).

2.4 The Values of L-functions at Non-positive Integers

In this section we use the result of the previous section to analytically continue
Dirichlet L-series to the entire complex plane and to evaluate the corresponding
L-functions at non-positive integers (by L-function I mean the analytic contin-
uation of an L-series).

Our method for doing this will be to note that the L-series can be written
in terms of the partial zeta functions as follows

L(χ, s) =

∞∑
k=1

χ(k)

ks
=

n∑
r=1

χ(r)
ζ(s, n; r)

ns

where χ is a character of conductor n, i.e. the value of χ depends only on
the congruence class mod n. The above formula follows since

χ(r)
ζ(s, n; r)

ns
= χ(r)

∞∑
k=1

1

(n(k − 1) + r)s
=

∑
k≡r(n)

χ(k)

ks

Now we see that the analytic continuation of the partial zeta functions
derived in the preceding section provide the analytic continuation of L-series.

Moreover, the values of the L-functions at non-positive integers can be
determined from the formula for the continuation of the partial zeta functions.
We recall from last section that

ζ(s, n; r) =
ns−1

rs−1(1− s)
+
ns

2rs
+

l∑
k=1

B2k

(2k)!

s(s+ 1)(s+ 2)...(s+ 2k − 2)ns+(2k−1)

rs+(2k−1)

+s(s+ 1)(s+ 2)...(s+ 2l − 1)

∞∑
n=1

∫ n+1

n

B2l+1

(2l + 1)!
(x− n)

1

(x− n−r
n )s+2l

dx

and that if s is a non-positive integer and l is large enough, then the last
term in the sum is 0 so we obtain a finite expression for ζ(s, n; r). In particular,
we have

ζ(−m,n; r) =
1

m+ 1

(n
r

)−(m+1)

+
1

2

(n
r

)−m
+

1

m+ 1

l∑
k=1

B2k

(
m+ 1

2k

)(n
r

)−m+2k−1
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Where l is large enough so that 2l− 1 ≥ m. Noticing that B0 = 1, B1 = 1
2 , and

odd Bernoulli numbers vanish, we rewrite the above as

ζ(−m,n; r) =
1

m+ 1

m+1∑
k=0

Bk

(
m+ 1

k

)( r
n

)m+1−k

Recalling the relationship between the Bernoulli numbers and Bernoulli poly-
nomials we see that

ζ(−m,n; r) =
1

m+ 1
Bm+1

( r
n

)
In particular, if r = n, we see that

ζ(−m) =
1

m+ 1
Bm+1(1) =

Bm+1

m+ 1

Finally we note that since

L(χ, s) =

n∑
r=1

χ(r)
ζ(s, n; r)

ns

we have that

L(χ,−m) =
1

m+ 1

n∑
r=1

χ(r)nmBm+1

( r
n

)
Now we make the following definition

Definition Let χ be a Dirichlet character of conductor n. Then define the
generalized Bernoulli numbers Bχ,k as

Bχ,k = nk−1
n∑
r=1

Bk

( r
n

)
Using this new notation we have that

L(χ,−m) =
Bχ,m+1

m+ 1

Notice that since the Bernoulli polynomials have rational coefficients, we see
that L(χ,−m) ∈ Q(ζn) (here n is the conductor of m). Additionally, the above
formulas give us an explicit way of representing L(χ,−m) in Q(ζn).
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